top of page

Blog Posts

All things related to SPR technology

6 Advantages of Surface Plasmon Resonance Technology

Updated: Oct 2, 2021


Surface Plasmon Resonance (SPR) is a biosensor technology used to detect biomolecular binding interactions in real-time. Surface plasmon resonance biosensors have a variety of applications in life science, therapeutic drug monitoring, quality control, food, environmental testing, and beyond. SPR is used to monitor binding events between molecules ranging from proteins to small molecules. There are multiple assays and biophysical techniques that are used to detect molecular binding such as enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, biolayer interferometry (BLI), and microscale thermophoresis (MST). Among all these, SPR is the most commonly and widely used technology for several reasons. In this article, we will discuss the top 6 advantages of using surface plasmon resonance devices over other assays and technologies.

Here are the 6 Advantages of a Surface Plasmon Resonance instrument:

  1. Real-time monitoring - The best thing about SPR in monitoring biomolecular binding interaction (e.g. protein-protein) is that we can observe the association and dissociation of molecules in real-time. The computer software associated with the instrument would output the association and dissociation curves as a sensorgram, which is a plot of the SPR signal vs. time. Other techniques such as ELISA and co-immunoprecipitation only indicate whether binding is occurring or not, but SPR gives more detailed information about the binding process. It tells us about binding kinetics such as on and off rates due to the presence of dynamic flow conditions, and affinity data, which are critical for a deeper understanding of the process under investigation.

  2. Label-free detection - One of the most important characteristics that makes SPR stand out among other techniques such as ELISA and MST is that it does not require any labeling as it is an optical technique. This is more accurate as there is no chance of the labels affecting the natural functionality of the ligand and/or analyte, e.g. antibodies. Moreover, it saves costs by not using expensive fluorescent and radioactive labels, and other reagents required for labeled detection.

  3. Small sample sizes - In a surface plasmon resonance experiment, the amount of sample size required is very small. Therefore, one would not require a lot of samples, especially if the yield resulting from protein purification is already low. In the same vein, less time is spent to acquire a purified sample for analysis

  4. Reusable sensor chips - The sensor chip used in an SPR experiment can be reusable, unlike the microwells used in ELISA. This saves both money and reduces waste, which makes it unique from other techniques and instruments. In an SPR experiment, a regeneration buffer can be used to dissociate the interaction between the ligand and analyte, and the sensors can be reused.

  5. Use of complex samples - In most biological experiments, it is essential to purify the sample for accurate results and analysis; however, in SPR analysis, this is not true. SPR is an optical technique, and the light path does not cross the sample. Therefore, SPR analysis allows one to use both simple and complex samples such as serum, blood, plasma, and cell lysate.

  6. Less laborious and short experimental time - A surface plasmon resonance instrument involves fewer washing and incubation steps compared to doing an immunoassay such as ELISA. Therefore, the length of an SPR run is much shorter; it takes minutes to a few hours to do a SPR experiment compared to hours or days for an ELISA.


Surface plasmon resonance technology is very useful to monitor biomolecular binding interactions in real-time. It has several advantages over other techniques such as real-time monitoring, label-free detection, small sample size requirement, reusable sensor chips, use of complex samples, and shorter experimental runs.

The Affinité Advantage

Affinité Instruments’ P4SPR™ is a very user-friendly, compact, and portable instrument. In addition, samples do not need much preparation and can be manually injected into the instrument. The P4SPR™, compared to a traditional immunoassay such as ELISA, provides fast, real-time affinity and/or kinetic data.

Simplicity - Fast training, fast results

Versatility - Pharmaceutical, biosensing, assay development applications

Economy - Affordable, accessible

We help life science labs and biotech companies to do rapid assay development and characterization. Feel free to reach out to us about the expertise we offer at


bottom of page